User interface

There are some major changes that have been applied to the user interface of ECAM in order to make it more user-friendly and easy-to-use:

  • Landing page: From here, you can easily “Start your assessment” to evaluate your utility’s energy performance or CO2 footprint. Further, you can activiate “Tips for new users” to include pop-ups that guide you through the tool. The new navigation bar is placed on the top and includes the pages: Home, ConfigurationInventoryResultsCompare assessments and More.

 

  • Configuration: ECAM provides now the possibility to manage and edit several assessments in the tool at the same time. The complete set of assessments, e.g. the evaluation of the greenhouse gas emissions of one utility for different years can then be saved in one JSON file.

 

  • In addition, you can load a saved JSON file to continue your assessment or you can merge different JSON files into one file by using the button “Append to current list

 

  • Another novelty is the function “Load assessment from Excel file“.

Steps:

  1. Download ECAM input template.
  2. Fill out template file.
  3. Upload filled file.

 

Urban water cycle stages

  • Inventory: To evaluate your CO2 footprint or energy performance, you must insert the required input data for the systems (Water supply and Sanitation) and respective stages (AbstractionTreatmentDistributionCollectionTreatment and Onsite sanitation) that you would like to assess.

 

  • Fecal sludge management: Users who worked with the fecal sludge management (FSM) component in ECAM 2.2 might have realized that major changes have been applied here. Now, FSM falls under “Onsite sanitation”. The inputs almost completely remained the same.

(more…)

Proyectos de Perú, México, Ecuador y Brasil de la cooperación alemana para el desarrollo, implementada por la GIZ, se unieron para desarrollar la “Guía para la recuperación verde en las ciudades de América Latina”. Esta herramienta tiene como objetivo presentar el concepto de recuperación verde y las características que deberían tener los proyectos con este enfoque. Lo innovador es que este documento se basa en evidencia presentando estudios de caso desarrollados en los sectores agua, energía, residuos y transporte para impulsar el desarrollo de ciudades sostenibles, resilientes y carbono-neutrales en América Latina.

Los casos de estudios sistematizados para Perú recogen la experiencia desarrollada en el sector urbano del agua por:

La Empresa Prestadora de Servicios de Agua y Saneamiento (EPS) de Cusco – SEDACUSCO:

Para la incorporación de medidas de protección climática en la operación de sus servicios. Este trabajo se desarrolló del 2015 al 2021, con el apoyo de la cooperación alemana para el desarrollo, implementada por la GIZ, a través de WaCCliM.

La EPS de Ica – Emapica: 

Acerca de la comercialización de aguas residuales crudas con el fin de proteger el ambiente, hacer uso eficiente del agua y mejorar la gestión de las aguas residuales, entre otras. Este trabajo realizó entre 2017 y 2019, con el apoyo de la cooperación alemana para el desarrollo, implementada por la GIZ, a través de PROAGUA II.

Es importante señalar que la Guía fue financiada por el Fondo de Innovación de la Red Sectorial de Gestión Ambiental y Desarrollo Rural en América Latina y el Caribe – GADeR-ALC. Más información sobre GADeR-ALC aqui.

Usted puede acceder a la Guía a través de los siguientes enlaces:

Versión en español

Versión en portugués

Versión en inglés

Peru, Mexico, Ecuador and Brazil´ projects from the German development cooperation, implemented by GIZ, worked together to develop the “Guide for green recovery in Latin American cities”. By doing so, they became familiar with the concept of green recovery and features such projects should entail. This guide is based on evidence and insights gained on the field, presenting case studies from the water, energy, waste and transport sectors to enable the development of sustainable, resilient and carbon-neutral cities in Latin America.

The case studies systematized for Peru include the experience developed in the urban water sector by:

Empresa Prestadora de Servicios de Agua y Saneamiento (EPS) de Cusco – Sedacusco:

For the incorporation of climate protection measures in the operation of its services. This work was developed from 2015 to 2021, with the support of German development cooperation, implemented by GIZ, through WaCCliM.

La EPS de Ica – Emapica:

About the commercialization of raw wastewater in order to protect the environment, make efficient use of water and improve wastewater management, among others. This work was carried out between 2017 and 2019, with the support of German development cooperation, implemented by GIZ, through PROAGUA II.

It is important to note that the Guide was financed by the Innovation Fund of the Sectoral Network for Environmental Management and Rural Development in Latin America and the Caribbean – GADeR-LAC. More information about GADeR-LAC here.

You can access the Guide through the following links:

Spanish Version

Portuguese Version

English Version

En el Perú las sequías y precipitaciones intensas son cada vez más frecuentes a consecuencia del cambio climático y, lamentablemente, afectan la disponibilidad, cantidad y calidad del agua. Asimismo, la operación de los sistemas de suministro de agua y de aguas residuales puede generar altos niveles de emisiones de gases de efecto invernadero (GEI).

Por este motivo, existe una necesidad de que las empresas prestadoras de servicios de agua y saneamiento (EPS) desarrollen, implementen y reporten medidas de adaptación y mitigación al cambio climático, para contribuir a la sostenibilidad de la prestación de los servicios y, por lo tanto, al beneficio directo de millones de habitantes del país.

Frente a esta situación, el Ministerio de Vivienda, Construcción y Saneamiento (MVCS) del Perú con el apoyo de la cooperación alemana para el desarrollo, implementada por la GIZ, a través de los proyectos WaCCliM y PROAGUA II que además cuenta con el apoyo de la Cooperación Suiza – SECO, viene trabajando en el desarrollo de capacidades de los profesionales de las EPS, ofreciendo dos cursos e-learning para la aplicación de herramientas digitales que permitan a los prestadores de servicios desarrollar, implementar y monitorear medidas de adaptación y mitigación al cambio climático, contribuyendo de esta manera con las NDC (Contribuciones Nacionalmente Determinadas, por sus siglas en inglés) del país.

Los cursos desarrollan los siguientes módulos:

1. Introducción a la gestión integral del cambio climático en el sector agua y saneamiento 2. Instrumento para la gestión del cambio climático en las EPS
  • Módulo I: Introducción al cambio climático – alcances internacional y nacional
  • Módulo II: El cambio climático y el sector agua y saneamiento
  • Módulo I: Adaptación al cambio climático en el sector agua y saneamiento
  • Módulo II: Mitigación del cambio climático en el sector agua y saneamiento
  • Módulo III: Elaboración, actualización y monitoreo de los Planes de Mitigación y Adaptación al Cambio Climático (PMACCs)

Los cursos de capacitación tendrán una duración de 5 meses (septiembre 2021 – enero 2022). Hasta el momento son 35 EPS inscritas en el primer curso – con un total de 129 profesionales (46 mujeres). Al finalizar el proceso de capacitación, los profesionales de las EPS estarán mejor preparados para elaborar o actualizar sus PMACCs. Estos instrumentos de planificación representan el aporte del sector agua y saneamiento a las NDC del país para cumplir con los compromisos globales de reducir las emisiones de GEI y aumentar la resiliencia climática.

Enlace al aula virtual del MVCS: http://aulavirtual.vivienda.gob.pe/aulavirtual/

Foto en la cabecera: ©GIZ/ Germán Ato

In Peru, droughts and heavy rainfalls are becoming more frequent as a result of climate change and, unfortunately, affecting water availability, quantity and quality. Likewise, operating water supply and wastewater systems may generate significant greenhouse gas (GHG) emissions.

Therefore, there is a need that water and sanitation utilities develop, implement and report climate change adaptation and mitigation measures; in order to contribute to the sustainability of services provision, and thus benefiting millions of Peruvians.

In this context, the Peruvian Ministry of Housing, Construction and Sanitation (Ministerio de Vivienda, Construcción y Saneamiento; MVCS) supported by the German development cooperation, implemented by GIZ, through the WaCCliM and PROAGUA II projects, which also has the support of the Swiss Cooperation – SECO, is working on building capacity of water and sanitation utilities, delivering two e-learning courses on digital tools’ application that enable utilities’ practitioners develop, implement and report climate change adaptation and mitigation measures, thus contributing to the country’s NDC (Nationally Determined Contributions).

The courses entail the following modules:

1. Introduction to integrated climate change management in the water sector 2. Tool for climate change management in water and sanitation utilities
  • Module I: Introduction to climate change – international and national levels
  • Module II: Climate change and the water sector
  • Module I: Adaptation to climate change in the water sector
  • Module II: Climate change mitigation in the water sector
  • Module III: Developing, updating and monitoring Climate Change Mitigation and Adaptation Plans (Planes de Mitigación y Adaptación al Cambio Climático; PMACCs)

The training courses will last 5 months (September 2021 – January 2022). Currently, 35 water and sanitation utilities have enrolled in the first course – accounting for a total 129 professionals (46 women). At the end of the training process, practitioners of water and sanitation utilities will be better prepared to develop or update their PMACCs. These planning instruments constitute the water sector’s contribution to the country’s NDC to meet the global commitments of reducing GHG emissions and increasing climate resilience.

Link to MVCS virtual classroom: http://aulavirtual.vivienda.gob.pe/aulavirtual/

Picture in header: ©GIZ/ Germán Ato

WaCCliM’s ‘Energy Performance and Carbon Emissions Assessment and Monitoring’ (ECAM) tool enables water and wastewater utilities to assess their carbon footprint and energy consumption, while revealing areas of improvement. As utilities around the world adopt the tool, WaCCliM has rolled out an advanced upgrade with ECAM 3.0, launched last week.

By identifying areas to reduce greenhouse gas emissions, increase energy savings and improve overall efficiencies, ECAM offers a holistic approach for urban water utilities to shift to climate-smart water management. It also prepares these utilities for future reporting needs on climate mitigation. Intended for utilities of all sizes and in all countries, the tool is free, open source, and available now on the WaCCliM website.

Utilities do not have to collect any special data or create an account to plug into ECAM. The tool works with the operational data that utility managers and operators use every day. If some data is unavailable, ECAM provides complementary assumptions based on Intergovernmental Panel on Climate Change (IPCC) models. WaCCliM has developed ECAM from the start to be consistent with the IPCC Guidelines for National Greenhouse Gas Inventories and peer-reviewed literature.

What can utilities do for the climate?

Water and wastewater management are energy intensive processes that cause greenhouse gas emissions whenever fossil energy sources are used. In addition, wastewater management can be a source of methane and nitrous oxide – both highly potent greenhouse gases. As cities everywhere grow and urban water demands rise, utilities have to act fast to avoid even higher emissions. Those that succeed can make a significant contribution to national mitigation plans and the global effort against runaway climate change.

For utilities that face this challenge, ECAM is a powerful analytic tool. It allows them to assess energy performance and carbon emissions throughout the urban water cycle, from abstraction and distribution to wastewater treatment and sludge management, adapting to the scope of analysis of each utility. It represents the first step toward a smart and sustainable urban water system with lower emissions and lower vulnerability to the local impacts of climate change. Moreover, it allows users to check and update the equations for accounting greenhouse gases, making users co-protagonists of the tool.

Utilities in more than 20 countries – as geographically diverse as Burkina Faso, Egypt, Jordan, Mexico, Peru and Zambia, among others – have put ECAM into action. These companies use it to understand emissions at a system-wide level and to evaluate where energy is consumed at each stage, with visualizations and reports allowing them to easily identify opportunities to cut emissions and simultaneously cut costs. It helps them develop scenarios, model reduction impacts of planned or implemented measures, report mitigation achievements, and even develop ideas for bankable projects such as biogas valorization or wastewater reuse.

Finally, WaCCliM is expecting to extend the use of ECAM to support urban water utilities in reducing carbon emissions systematically and strategically to assure business continuity and sustainable and effective water management under a changing climate.

 

Climate change is impacting a wide range of sectors, with water being one of them. Even though, over 2 billion people live in countries that are already experiencing high water stress [1], by 2050 around 52 % of the world’s population is projected to live in water-stressed regions [2]. Climate change is projected to reduce renewable surface water and groundwater resources significantly in most dry subtropical regions and negatively impact freshwater ecosystems by changing streamflow and water quality [3]. Water stress is not the only challenge brought on by climate change. By 2030, the number of people impacted by floods might double worldwide [4], causing damage to urban water systems. At the same time, water and wastewater utilities contribute to global greenhouse gas emissions, with emissions coming especially from energy consumption (often by burning fossil fuels), wastewater collection, wastewater treatment, wastewater discharge and sludge management.

Scientific evidence is now pointing at the impacts of climate change on water utilities worldwide. A 10 years scientific study in Norway suggests that extreme weather events contribute to poor raw water quality [5]. Also, impacts in wastewater utilities in countries like New Zealand have been reported to fit in 3 categories: Nuisance flooding spills and odor, water quality deterioration and damage to infrastructure [6]. Climate change will affect water resources generally through increasing temperatures, sea-level rise, shift in the precipitation patterns, changes in snow cover, and the increase in the frequency and intensity of flooding and droughts, which might cause a shortage in urban water supplies and damage to infrastructures [3].These hazards occur with different intensities depending on regional and local variables, which is why urban water utilities need to assess climate risks individually.

A climate risk assessment is the first step for resilient water management, which is a prerequisite for successful climate change adaptation. Once water and wastewater utilities have identified and prioritized their most critical climate risks and critical thresholds, adaptation actions can be implemented to confront climate change impacts. Examples of these measures include: Building traditional or nature-based flood barriers to protect infrastructure, diversifying water supply, wastewater reuse, improving water storage, identifying and repairing water leaks, relocating facilities to higher elevations, among others [7]. International donors and funding mechanisms provide climate funding for adaptation measures. These include among others the Global Environmental Facility, the Adaptation Fund and the Green Climate Fund. At the same time, other financial mechanisms such as taxes and subsidies could contribute to financing adaptation measures in urban water utilities.

Climate Risk Management in Indonesia. Photo Credits: GIZ

Restoring and managing natural and artificial ecosystems and water storage systems sustainably could be our best ally for climate adaptation in the water sector. Groundwater aquifers, if sustainably managed, can store excess water and guarantee water provision in times of drought. Jordan for instance, is highly dependent on groundwater resources and faces increasing water demand. This has led to reduced groundwater availability, the salinization of groundwater resources and the collapse of biodiverse natural water reserves such as the Azraq wetland reserve. More than 80% of Jordan is unpopulated due to desert conditions, where annual precipitation falls under 50 millimeters, and yet the country is projected to become drier under climate change [8]. Therefore, in order to safeguard the strategic function of groundwater aquifers for the urban water sector in times of overexploitation, these must be conserved through sustainable water withdrawals and aquifer recharge practices.

Qunli Stormwater Wetland Park in China. Photo credits: Turenscape

Moreover, adaptation measures could include Nature-based Solutions (NbS) which involve protecting, restoring or sustainably managing natural or modified ecosystems to improve resilient water and wastewater management. Common NbS for enhancing raw water availability, quality and protect infrastructure from flooding include among other activities basin and mangrove reforestation, aquifer recharge, urban lagoons, rainwater capture and artificial wetlands. Nature-based Solutions have the potential to address climate resilience challenges while bringing additional multiple benefits such as clean water, clean air, climate regulation, biodiversity, food and water security.

Finally, it is necessary to switch from a response-based action to an anticipatory climate risk planning to avoid reaching critical thresholds where impacts are intolerable. As water and climate change do not have borders and a single actor cannot effectively address complex water issues, cross-sectorial cooperation and a participatory approach are key for climate resilience.

We all depend on a reliable supply of clean drinking water and efficient wastewater systems to sustain our health. Therefore, water and wastewater utilities are key agents and need to ensure business continuity through considering climate risks in their strategic planning, operations and cross-sectorial initiatives.

[1] UN (2018): SDG 6 Synthesis Report 2018 on Water and Sanitation.
[2] MIT (2014): Predicting the future of global water stress.
[3] IPCC (2014): Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269.
[4] WRI (2020): The Number of People Affected by Floods Will Double Between 2010 and 2030.
[5] Herrador, B.R.G., De Blasio, B.F., MacDonald, E., Nichols, G., Sudre, B., Vold, L., Semenza, J.C. & Nygård, K., (2015): Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: a review. Environmental Health, 14(1), pp.1-12.
[6] Hughes, J., Cowper-Heays, K., Olesson, E., Bell, R., & Stroombergen, A. (2020): Impacts and implications of climate change on wastewater systems: A New Zealand perspective. Climate Risk Management, 100262.
[7] EPA (2020): Adaptation actions for water utilities.
[8] World Bank Group (2021). Climate Knowledge Portal. Last accessed on June 7, 2021.

The first system in Peru to produce clean energy from municipal sewage is in the city of Cusco. The water utility – SEDACUSCO decided to use the resources derived from the city´s  sewage treatment – sludge and biogas, to reduce sewage treatment´s energy costs and lessen environmental impacts.

In 2014, SEDACUSCO supported by the Ministry of Housing, Construction and Sanitation and the German development cooperation, implemented by GIZ, through the WaCCliM project, started operating an anaerobic digester for treating sludge and producing biogas on a continous basis. In this way, SEDACUSCO attained a steady reduction in the amount of untreated sludge disposed of. In 2020, SEDACUSCO avoided about 7,804 tonnes of CO2 equivalent per year (t CO2 e/year), equal to 5,574-passenger flights from Lima – Frankfurt – Lima. Meanwhile, the biogas was flared and released into the atmosphere without valorization.

As of March 2021, SEDACUSCO based on the German experience, is pioneering in turning biogas into thermal and electrical energy, that will supply all of the San Jerónimo plant´s electrical need to treat the sewage and become energy – autonomous. The inauguration of this biogas-powered clean energy production system, took place on 25 March, and was attended by the Minister of Housing, Construction and Sanitation alongside other officials from the Ministry, regional and local governments of Cusco, and SEDACUSCO itself.

With the implementation of this new system, SEDACUSCO will save EUR 260,000 in annual electricity costs and use the biogas avoiding 544 tonnes of CO2 equivalent per year (t CO2e/year) in addition to the emissions avoided by the sludge treatment.
This initiative is the first of its kind in the country and will serve as an example for other water utilities. A key aspect was SEDACUSCO’s ownership of this new approach – considering sludge as a resource rather than waste; and thus addressing not only its challenges in sludge management, sewage treatment and clean energy generation but also reducing its carbon footprint.

In the future, for scaling up and replicating such initiatives, it will be required to assess the potential if residual sludge (digestate) can be used as an organic compost and surplus produced energy can be exported for usage beyond the plant. Moreover, to leverage financial resources and strenghten capacity to adapt and implement the technology to different country´s contexts. The bottom line is that Peru’s water utilities are moving forward in the carbon neutral transformation of their operations.

Picture in header: The energy production system fuelled with biogas in the city of Cusco ©SEDACUSCO

El primer sistema del Perú que produce energía limpia de los desagües municipales está en la ciudad del Cusco. La empresa de agua – SEDACUSCO apostó por aprovechar los recursos derivados del tratamiento de los desagües de la ciudad – lodos y biogás, para reducir sus costos de energía eléctrica del tratamiento de los desagües y disminuir su impacto en el ambiente.

En el 2014, SEDACUSCO con el apoyo del Ministerio de Vivienda, Construcción y Saneamiento y la cooperación alemana para el desarrollo, implementada por la GIZ, a través del proyecto WaCCliM, inició la operación de un digestor anaerobio para tratar los lodos y producir biogás de forma continua. De esta forma, logró reducir gradualmente la cantidad de lodos sin tratar dispuestos en el terreno, tal es así que para el 2020 logró evitar 7,804 toneladas equivalentes de CO2 anuales (t CO2 e/año), que equivale a los vuelos de 5,574 pasajeros de Lima – Frankfurt – Lima. En tanto que el biogás era quemado y liberado a la atmósfera sin aprovecharse.

A partir de marzo 2021, SEDACUSCO basada en la experiencia alemana, es pionera en el país en convertir el biogás en energía térmica y eléctrica, para abastecer a la planta San Jerónimo de toda la energía que necesita para tratar los desagües y conseguir así autonomía energética. La inauguración de este nuevo sistema – de producción de energía limpia alimentado por biogás, realizado el 25 de marzo, contó con la presencia de la Ministra de Vivienda, Construcción y Saneamiento junto a otras altas autoridades del Ministerio, gobierno regional y gobiernos locales del Cusco así como de SEDACUSCO.

Con la puesta en operación de este nuevo sistema, SEDACUSCO logrará ahorrar EUR 260,000 por gastos anuales de electricidad y aprovechará el biogás evitando 544 toneladas equivalentes de CO2 anuales (t CO2e/año) adicionales a las emisiones evitadas por el tratamiento de lodos.

Esta iniciativa es la primera de su clase en el país y servirá de ejemplo para otras empresas de agua. Un aspecto clave fue la apropiación de SEDACUSCO de este nuevo enfoque – es decir considerar a los lodos como recursos más que desechos; y así abordar no sólo sus desafíos en la gestión de los lodos, el tratamiento de los desagües y la generación de energía limpia sino también reducir su huella de carbono.

En el futuro, para escalar y replicar este tipo de iniciativas, también será necesario analizar el potencial de utilizar los lodos residuales del tratamiento (digestato) como compost orgánico y exportar el exceso de energía producida para su uso más allá de la planta. Además, será necesario apalancar recursos financieros y fortalecer capacidades para adaptar e implementar la tecnología en los diferentes contextos del país. Lo importante es que las empresas de agua del Perú están empezando la transformación carbono neutral de la operación de sus servicios.

Foto en la cabecera: El sistema de producción de energia alimentado por biogás de la ciudad del Cusco ©SEDACUSCO

In the years and decades ahead, water and wastewater utilities can take many different actions to reduce greenhouse gas emissions. But what if they don’t? This is not a pessimistic question, but a very important one. Modelling a future with no mitigation actions – business as usual – is an important part of ensuring that actions happen.

That idea is the basis of WaCCliM’s new approach to understanding business-as-usual futures, the Methodology for Establishing Baseline Scenarios in the Urban Water Sector with ECAM.

The approach builds on the Energy Performance and Carbon Emissions Assessment and Monitoring (ECAM) tool, a first-of-its-kind online tool that allows water and wastewater utilities to take a holistic approach to reducing energy use and greenhouse gas emissions throughout the urban water cycle. ECAM allows utilities to enter their existing data into the tool and model actions they are considering to estimate the benefits of mitigation. The new baseline methodology goes a step further by identifying how emissions would evolve over time if current management and practices were to continue.

As water flows through an urban water cycle to meet the needs of residents and industry, greenhouse gases are produced indirectly through energy consumption, and often released directly from untreated or poorly treated wastewater. Modelling the unchecked growth of these emissions allows utilities to reveal the benefits of investing in mitigation – which they can do by getting more energy efficient, stopping water losses, better managing wastewater and sludge, or extracting and using biogas, among other possibilities.

Baseline scenarios are far from simple models; projecting past developments into the future requires many parameters and the best available data. Scenarios are based on the physical and biochemical characteristics of the emission pathways in the urban water cycle, with key parameters affected by socio-economic, technological and climatic forces, ranging from the numbers of people expected to move to cities to the composition of their diets. For rapidly growing cities in countries with developing economies, the only certainty with these parameters is that they will not stay static in the years ahead.

Yet it is possible to project them. They can be based on the trends derived from international and national databases, journal publications, reports and policy documents – including the reports and models of the Intergovernmental Panel on Climate Change (IPCC), which WaCCliM’s methodology takes as a basis.

There are four steps to the methodology. The first step involves defining the boundaries of the specific urban water cycle to be considered, and the time horizon over which it will be modelled. In the second step, the key parameters and driving factors of the emission trajectory are determined, taking national and global trends into account. The third step is data collection and projection, and for this WaCCliM has developed a custom Excel-based tool, Project ECAM Inputs for GHG Emissions (PEIGE). This generates a projection of business-as-usual conditions in future years that, in the fourth step, can be entered into ECAM’s freely available online interface to compare with alternative scenarios.

The power of this methodology is evident in two initial case studies published by WaCCliM. In Madaba, Jordan, WaCCliM modelled the possible trajectory of the utility Miyahuna’s greenhouse gas emissions under business as usual all the way to 2040. These will be critical years, with population growth, economic development and an influx of refugees widening the gap between water supply and demand in the dry region. The scenarios showed that the direct and indirect greenhouse gases emitted by the utility could increase from around 40,000 tons carbon dioxide equivalent (CO2e) in 2016 to nearly 110,000 in 2040, if the utility were to continue with no changes to its operations.

In San Francisco del Rincón in north-central Mexico, unsustainable abstraction, high water losses and inadequate wastewater treatment challenge the two utilities Sistema de Agua Potable y Alcantarillado de San Francisco (SAPAF) and Sistema Intermunicipal para los Servicios de Tratamiento y Disposición de Aguas Residuales para los Municipios del Rincón (SITRATA). WaCCliM also modelled the trajectory of these utilities’ business-as-usual emissions to 2040. The scenarios showed that emissions from the water supply system might increase by up to 58%, while emissions from the wastewater system could dip by 8% thanks to a gradually expanding treatment area.

Neither in Madaba nor in San Francisco del Rincón, however, did business proceed as usual. Among other measures, the Jordanian utility has upgraded pumps to more efficient models, already achieving 1,000 tons CO2e mitigation per year despite its fast-growing service area. The Mexican utilities, instead of expanding wastewater treatment gradually, have acted much faster to extend the system from 48% of the city to 80%, achieving mitigation of 2,500 tons CO2e per year.

The effects of actions like these need to be measured against something – and the business-as-usual scenarios are that something. The methodology is an important step towards estimating the reduction of utilities’ carbon footprints, and a strong technical component for further implementation of climate policies, right up to regional and national scales.