In the years and decades ahead, water and wastewater utilities can take many different actions to reduce greenhouse gas emissions. But what if they don’t? This is not a pessimistic question, but a very important one. Modelling a future with no mitigation actions – business as usual – is an important part of ensuring that actions happen.

That idea is the basis of WaCCliM’s new approach to understanding business-as-usual futures, the Methodology for Establishing Baseline Scenarios in the Urban Water Sector with ECAM.

The approach builds on the Energy Performance and Carbon Emissions Assessment and Monitoring (ECAM) tool, a first-of-its-kind online tool that allows water and wastewater utilities to take a holistic approach to reducing energy use and greenhouse gas emissions throughout the urban water cycle. ECAM allows utilities to enter their existing data into the tool and model actions they are considering to estimate the benefits of mitigation. The new baseline methodology goes a step further by identifying how emissions would evolve over time if current management and practices were to continue.

As water flows through an urban water cycle to meet the needs of residents and industry, greenhouse gases are produced indirectly through energy consumption, and often released directly from untreated or poorly treated wastewater. Modelling the unchecked growth of these emissions allows utilities to reveal the benefits of investing in mitigation – which they can do by getting more energy efficient, stopping water losses, better managing wastewater and sludge, or extracting and using biogas, among other possibilities.

Baseline scenarios are far from simple models; projecting past developments into the future requires many parameters and the best available data. Scenarios are based on the physical and biochemical characteristics of the emission pathways in the urban water cycle, with key parameters affected by socio-economic, technological and climatic forces, ranging from the numbers of people expected to move to cities to the composition of their diets. For rapidly growing cities in countries with developing economies, the only certainty with these parameters is that they will not stay static in the years ahead.

Yet it is possible to project them. They can be based on the trends derived from international and national databases, journal publications, reports and policy documents – including the reports and models of the Intergovernmental Panel on Climate Change (IPCC), which WaCCliM’s methodology takes as a basis.

There are four steps to the methodology. The first step involves defining the boundaries of the specific urban water cycle to be considered, and the time horizon over which it will be modelled. In the second step, the key parameters and driving factors of the emission trajectory are determined, taking national and global trends into account. The third step is data collection and projection, and for this WaCCliM has developed a custom Excel-based tool, Project ECAM Inputs for GHG Emissions (PEIGE). This generates a projection of business-as-usual conditions in future years that, in the fourth step, can be entered into ECAM’s freely available online interface to compare with alternative scenarios.

The power of this methodology is evident in two initial case studies published by WaCCliM. In Madaba, Jordan, WaCCliM modelled the possible trajectory of the utility Miyahuna’s greenhouse gas emissions under business as usual all the way to 2040. These will be critical years, with population growth, economic development and an influx of refugees widening the gap between water supply and demand in the dry region. The scenarios showed that the direct and indirect greenhouse gases emitted by the utility could increase from around 40,000 tons carbon dioxide equivalent (CO2e) in 2016 to nearly 110,000 in 2040, if the utility were to continue with no changes to its operations.

In San Francisco del Rincón in north-central Mexico, unsustainable abstraction, high water losses and inadequate wastewater treatment challenge the two utilities Sistema de Agua Potable y Alcantarillado de San Francisco (SAPAF) and Sistema Intermunicipal para los Servicios de Tratamiento y Disposición de Aguas Residuales para los Municipios del Rincón (SITRATA). WaCCliM also modelled the trajectory of these utilities’ business-as-usual emissions to 2040. The scenarios showed that emissions from the water supply system might increase by up to 58%, while emissions from the wastewater system could dip by 8% thanks to a gradually expanding treatment area.

Neither in Madaba nor in San Francisco del Rincón, however, did business proceed as usual. Among other measures, the Jordanian utility has upgraded pumps to more efficient models, already achieving 1,000 tons CO2e mitigation per year despite its fast-growing service area. The Mexican utilities, instead of expanding wastewater treatment gradually, have acted much faster to extend the system from 48% of the city to 80%, achieving mitigation of 2,500 tons CO2e per year.

The effects of actions like these need to be measured against something – and the business-as-usual scenarios are that something. The methodology is an important step towards estimating the reduction of utilities’ carbon footprints, and a strong technical component for further implementation of climate policies, right up to regional and national scales.

How to contribute to global commitments while
achieving sectoral objectives?

Mainstreaming Nationally Determined Contributions (NDCs) into Peruvian water sector´s strategies and interventions offer a great opportunity to ensuring universal, sustainable and quality access to water and sanitation services, while complying with the Agenda 2030 (SDG 6) and the Paris Climate Agreement.

In this context, the General Directorate of Environmental Affairs (Dirección General de Asuntos Ambientales; DGAA) of the Peruvian Ministry of Housing, Construction and Sanitation (Ministerio de Vivienda, Construcción y Saneamiento; MVCS) has introduced the Climate Change Mitigation and Adaptation Plans (Planes de Mitigación y Adaptación al Cambio Climático; PMACC) as planning instruments to face climate change in the water and sanitation utilities´ area of responsibility. To find out on how much progress do utilities have made so far? – regarding the prioritized climate measures – DGAA with the support of the German Development Cooperation and the Swiss Cooperation – SECO, implemented by GIZ, through WaCCLiM and PROAGUA II, carried out an “Assessment on PMACC Implementation´s Extent by utilities under the Peruvian NDCs“.

This assessment report provides information on what adaptation and/or mitigation measures have been implemented so far, highlighting the considerations of co-benefits such as operating costs reduction, operational efficiency and water bodies´ protection. Furthermore, it addresses the main barriers including gaps on capacity development but also opportunities for climate measures´ monitoring and follow-up. These findings will inform to decision makers and practitioners when updating the water-related NDCs under the ongoing process of enhancing NDCs ambition.

What is next?

The findings of the PMACC Implementation´s report will be applied for updating sector´s strategies and interventions, in order to ensure access and quality of water and sanitation services in a context of climate change – recognizing its importance for public health, economic recovery along with environmental and climate protection. Moreover, it will be required to link climate measures with financing mechanisms to support the transition from planning to action. Thus, these findings will also feed the national and regional Water and Sanitation Plans´ updating process, currently under development by the MVCS.

The task is ongoing, and the International Cooperation is seizing the digital transformation´s processes and tools for bringing about its advisory services at the forefront.

¿Cómo contribuir a los compromisos globales y
a la vez alcanzar
los objetivos sectoriales?

La integración de las Contribuciones Determinadas a Nivel Nacional (NDC) en las estrategias e intervenciones sectoriales ofrece una gran oportunidad para asegurar el acceso universal, sostenible y de calidad a los servicios de saneamiento, y a la vez cumplir con la Agenda 2030 (ODS 6) y el Acuerdo Climático de París.

En este contexto, la Dirección General de Asuntos Ambientales (DGAA) del Ministerio de Vivienda, Construcción y Saneamiento (MVCS) del Perú ha introducido los Planes de Mitigación y Adaptación al Cambio Climático (PMACC) como instrumentos de planificación para enfrentar el cambio climático en el ámbito de responsabilidad de las Empresas Prestadoras de Servicios de Saneamiento (EPS). Para conocer ¿cuánto han avanzado las EPS en la implementación de las medidas de adaptación y mitigación priorizadas en los PMACC?, la DGAA, con el apoyo de la cooperación alemana para el desarrollo y la Cooperación Suiza – SECO, implementada por la GIZ, a través de WaCCliM y PROAGUA II, realizó una “Evaluación del nivel de implementación de los PMACC por las EPS en el marco de las NDC del Perú”.

Esta evaluación ha permitido conocer qué tipos de medidas de adaptación y/o mitigación vienen implementando los prestadores de servicios, considerando los cobeneficios de reducción de costos operativos, eficiencia operativa de los sistemas y protección de los cuerpos de agua. De igual forma, la evaluación ha identificado los principales desafíos para su implementación, brechas de capacidades y oportunidades para el monitoreo y seguimiento de las medidas. Toda esta información servirá de insumo para actualizar las NDC del sector saneamiento como parte del proceso en marcha a nivel nacional de incremento de las ambiciones de las NDC.

Próximos pasos

Los resultados del nivel de implementación de los PMACC podrán ser utilizados para actualizar las estrategias e intervenciones sectoriales que permitan asegurar el acceso y la calidad de los servicios de agua y saneamiento en un contexto de cambio climático, reconociendo su importancia para la salud pública, la reactivación económica del país y la protección del ambiente y el clima. Asimismo, será necesario vincular las medidas climáticas a mecanismos de financiamiento que apoyen la transición de la planificación a la acción. Por este motivo, podrán servir como insumo para la actualización de los planes de saneamiento a nivel nacional y regional, proceso iniciado por el MVCS.

El trabajo está en marcha y desarrollar capacidades para lograrlo trae consigo grandes desafíos para la cooperación internacional, que con la ayuda de herramientas digitales busca estar a la vanguardia en sus procesos de asesoramiento.

Job description

The global project ‘Water and Wastewater Companies for Climate Mitigation’ (WaCCliM) cooperates with the partner countries Jordan, Mexico and Peru. The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) supports this project as part of the International Climate Initiative (IKI). The objective of WaCCliM is to advise water and wastewater utilities on their way to carbon neutrality and improved climate resilience. By this, the water sectors in the partner countries become climate smarter. The key objectives of the programme are 1) to integrate GHG reduction technologies such as energy efficiency, water loss reduction as well as climate risk analysis into the operations of selected water and wastewater utilities; 2) to improve political and institutional framework conditions for climate protection in the water sector; and to 3) develop capacities for climate protection in the water and wastewater sector.

Job-ID: P1490V1980

Location: Bonn

Assignment period: 11/01/2020 – 04/30/2021

Application deadline: 09/21/2020

Your tasks

This internship presents a unique opportunity to gain first-hand experience on how the water sector can contribute to protect our climate and improve climate resilience. The work provides valuable insights into carbon accounting methods for the water industry as well as technology cooperation, policy advice and implementation of measures to reduce GHG emissions in three partner countries. The intern gains insight into challenges and the sensitive issue of communication with and between manifold partners from diverse backgrounds and with varying interests and capacities. Under the supervision of senior team members, the intern will be expected to support the team on a range of functions, including:

  • Support project team in the development of a concept for eLearning for the Energy Performance and Carbon Emissions Assessment and Monitoring (ECAM) Tool
  • Update and develop new training materials for face-to-face, partly virtual and online ECAM trainings
  • Research background information and development of material on climate risk analysis for urban water and wastewater utilities
  • Support to the internal and external communication (esp. social media accounts) of the global programme and the activities in the partner countries
  • Assist project team in the preparation, implementation and recording of virtual workshops of the global project team
  • Conduct research on different topics related to urban water management and climate change
  • Support project progress reporting and knowledge management
  • Ad hoc assignments and support to the project team

Your profile

  • At least a bachelor’s degree in environmental sciences, development studies, information and communication sciences, or a related discipline and studying at master’s Level
  • Knowledge about climate change mitigation and adaption
  • Strong communication skills, highly proactive and organized, able to communicate effectively and to work in a team
  • Excellent interpersonal and verbal/written communication skills, particularly in written and spoken English and German are required, Spanish skills would be an strong asset
  • Assets would be but are not conditional prerequisites: experiences in media relations, experiences with eLearning formats, working knowledge of Adobe Illustrator/Adobe InDesign, PR, work experience in emerging economies and/or private sector companies

Notes

Please be informed that you are only allowed to apply for this internship, if you are currently enrolled as a student or graduated not longer than six months ago from the start of your internship.

GIZ would like to increase the proportion of employees with disability, both in Germany and abroad. Applications from persons with disabilities are most welcome.

Application

GIZ Job Portal

Everyone is talking about digitalisation, and with good reason: digital change is reaching into almost every moment of human life. While the technologies have been arriving decade by decade, the world has never seen anything like the wave of the last few years. In 2018, more than 18 billion devices were connected to the internet, and the number is projected to hit nearly 30 billion by 2023 – which will be more than three devices per person on the planet. Half of these will not be accessed by people at all, but will only talk to other devices.

This is digitalisation: it doesn’t just mean living with digital devices, but living in a digitally determined world. People direct their life stories on social media, order their clothes and meals online, exchange projects with work colleagues on a global scale, and – especially in the locked-down world of 2020 – meet their friends and family over high-definition video streams.

Digitalisation is also changing the way people consume water. Many are switching to smart meters that provide real time data and enable households to make informed decisions on their water consumption. Positive benefits also extend to water utilities; for example, smart meters can detect leakages and reduce the labour costs associated with more traditional metering systems. Smart meters are one example in a range of technological innovations that are now transforming how water utilities operate – from machine learning that helps to predict water shortages and track flood patterns to robotics that improve the effectiveness and safety of tasks prone to human error.

Digitalisation impacts heavily on the environment, however, as billions of short-lived, electrically powered devices communicate with one another and with high-performance cloud services running on perpetually humming server farms. The whirlwind pace of digital expansion has raised fears that it could all be a high-tech emissions engine. Estimates suggest that information and communication technology is responsible for 3.6% of global electricity usage and contributes 1.4% of global emissions.

In other words, digitalisation is not innocent when it comes to the other whirlwind change of the present day: global climate change. To be part of a sustainable, liveable future, digitalisation has to decisively support positive outcomes for the climate and environment. Fortunately, there are many ways in which it can, not least in the water and wastewater sector.

WaCCliM’s Digital Toolbox

WaCCliM is a digitally native project: we connect municipalities and water and wastewater utilities in online exchanges, provide digital tools like ECAM to assess greenhouse gas emissions and prioritise climate mitigation measures, and disseminate effective approaches through our digital knowledge platform, Climate Smart Water. And this is only the beginning of our work to promote digitalisation in the service of mitigation. We have identified a number of digital solutions in our pilot countries that can directly lead to more efficient operation, letting utilities save and recover energy and resources.

In Madaba, Jordan, our partner utility installed energy-efficient pumps with variable frequency drives in April 2019. More than just efficient, these pumps are an important step towards digitalisation in the urban water system. With access to so much powerful operating data, the utility knows the status of its drive system and gains insights for optimising the production and availability of drinking water. Meanwhile, planned vibration monitoring sensors will alert the utility to potential problems, contributing to higher efficiency and longevity of the pumps. They are now investigating other digital options for early detection of water leakages, which will allow for perfectly targeted maintenance across the system before any water is unnecessarily lost.

In Cusco, Peru, our partner utility has embraced digitalisation to more efficiently assess biogas production. Biogas analysers, which are currently being compared and evaluated, will  help to assess and monitor the quality of biogas they are producing from wastewater. These analysers are key components of an efficient biogas recovery system, whereby the methane and nitrous oxide generated from the breakdown of organic matter in wastewater are captured instead of escaping into the atmosphere. With an effective, digitally guided recovery system in place, the utility will power its own operations from these otherwise damaging greenhouse gases.

A Green Agenda for Digitalisation

Sensors and solutions like these are driving green digitalisation. According to a 2015 estimate, then-existing digital solutions had the potential to reduce global emissions by as much as 15% by 2030 – and the solutions are only growing in number.

In the water sector and every sector, digitalisation needs to have a small footprint and use it to create big benefits for the environment and the climate. To ensure this will happen, Germany’s Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) adopted a Digital Policy Agenda for the Environment in March 2020, with measures that tie together digitalisation and environmental protection.

The Agenda grew out of a pathbreaking process in the autumn of 2019, with more than 200 experts coming together for an environmental workshop. It comprises more than 70 measures to make digitalisation green; many are already under way, others in early development with a promising future. The goal is nothing less than socio-ecological transformation across the areas of mobility, nature conservation, agriculture, water management, “Industry 4.0”, the circular economy and sustainable consumption.

WaCCliM’s ongoing work with digital tools in the urban water sector is well aligned with a significant part of BMU’s plans: the use of digital water management for better services. The Ministry is pursuing solutions to bring the German water management sector more efficient operations, savings and recovery of energy and resources, and digital planning processes for infrastructure. We look forward to bringing these experiences, too, into our global community of practice, and making the rapidly digitalising water sector a significant field of action in climate mitigation.

Frente a la pandemia del COVID-19, los prestadores de servicios de saneamiento del Perú siguen cumpliendo sus responsabilidades de proporcionar servicios de agua y saneamiento seguros y fiables a la población, aunque muchos de ellos tienen que enfrentar recursos insuficientes, escasez de personal e interrupciones en la cadena de suministro de productos químicos y equipos de protección personal,
lo que puede afectar la continuidad del servicio.

En particular, para el caso de las aguas residuales, los prestadores de servicios necesitan adoptar medidas para prevenir la propagación del COVID-19 entre su personal y asegurar la continuidad del tratamiento de las aguas residuales protegiendo el ambiente y el clima. La gestión adecuada de las aguas residuales permitira no sólo abordar la pandemia sino también seguir avanzando en la seguridad del abastecimiento de agua urbano y la reducción de emisiones de gases de efecto invernadero (GEI).

En la medida que progrese la pandemia, los prestadores de servicios requerirán de medidas para prepararse, responder y recuperarse de la pandemia, y  asegurar la continuidad de los servicios de tratamiento de aguas residuales en situaciones cambiantes.

Como ejemplo,  el prestador de servicios de la ciudad del Cusco (EPS SEDACUSCO), con el apoyo de la Cooperación Suiza – SECO y la cooperación alemana para el desarrollo implementada por la GIZ, a través de PROAGUA II y WaCCLiM, ha elaborado su Plan de Contingencia para enfrentar la Pandemia COVID-19 en la Planta de Tratamiento de Aguas Residuales (PTAR) San Jerónimo, enfocándose en aspectos de protección de la salud del personal, mantenimiento de las operaciones esenciales, mantenimiento de las instalaciones, equipos y suministros esenciales, y la comunicación con los usuarios y las autoridades de gobierno.

En particular, el Plan de Contingencia de la PTAR San Jerónimo analiza los procesos críticos  para asegurar la continuidad de las operaciones ante la escasez de personal; los insumos y materiales críticos para superar las interrupciones en la cadena de suministro , y las estrategias en caso no se puedan ejecutar los servicios y/o contratos críticos.

Este Plan de Contingencia de la PTAR San Jerónimo es parte de una serie de herramientas para que los prestadores de servicios de saneamiento puedan asegurar la continuidad de los servicios frente a la pandemia, beneficiando a miles de peruanos y avanzando hacia una recuperación carbono neutral y resiliente a clima.

Este buen ejemplo de la EPS SEDACUSCO es muy importante para replicar con otros prestadores de servicios del país, que todavía están en proceso de adaptarse para operar los sistemas de tratamiento de aguas residuales frente a la pandemia, y a la vez proteger el ambiente y el clima.

In the face of the COVID-19 pandemic, Peru’s sanitation service providers continue to fulfil their responsibilities to provide safe and reliable water and sanitation services for the population, although many of them are already facing insufficient resources, staff shortages and disruptions in the supply chain of chemicals and personal protective equipment, which may affect the service continuity.

In particular, as far as wastewater is concerned, service providers need to adopt measures for preventing COVID-19´s spread among their personnel and ensuring wastewater treatment´s continuity while protecting the environment and climate. Proper wastewater management will not only address the pandemic but also move towards ensuring urban water security and reducing greenhouse gas (GHG) emissions.

As the pandemic progresses, service providers will require measures to prepare for, respond to and recover from the pandemic, and to ensure wastewater treatment´s continuity in changing situations.

As an example, the Cusco city´s service provider (SEDACUSCO), with the support of the Swiss Cooperation – SECO and the German Development Cooperation implemented by GIZ, through WaCCliM and PROAGUA II, has drawn up a Pandemic COVID-19 Contingency Plan for its Wastewater Treatment Plant (WWTP) San Jerónimo, focusing on protecting personnel´s health, maintaining essential operations, facilities, equipment and supplies, and communicating with customers and government authorities.

The Contingency Plan of the wastewater treatment plant San Jerónimo analyzes critical processes to ensure continuity of operations in the face of personnel shortages; critical inputs and materials to overcome interruptions in the supply chain, and strategies in case critical services and/or contracts cannot be executed.

This Contingency Plan is part of a tool series for sanitation service providers to ensure the services´ continuity in the face of the pandemic, benefiting thousands of Peruvians and moving towards a carbon neutral and climate resilient recovery.

This good practice example of SEDACUSCO water and wastewater utility is very important for replicating with other service providers across the country, who are still adapting to operating wastewater treatment systems in the face of the pandemic, while protecting the environment and climate.

“Estas reuniones [virtuales] son una oportunidad para intercambiar información que contribuirán con la nueva propuesta del Plan Nacional de Saneamiento y los Planes Regionales.”

Así lo mencionó la Ing. Mary Tesen (Especialista Sectorial de la Dirección de Saneamiento (DS) del Ministerio de Vivienda, Construcción y Saneamiento – MVCS), al finalizar la primera reunión virtual, realizada el 23 de abril del presente, en el marco de la actualización de los Planes de Saneamiento.

La reunión tuvo como objetivo brindar una inducción a los profesionales de la DS, sobre los compromisos, desafíos y oportunidades del sector saneamiento para la implementación de las Contribuciones Determinadas a Nivel Nacional (NDC) y el logro del ODS 6. Dichos profesionales son los encargados del proceso de actualización de los Planes Regionales y Plan Nacional de Saneamiento y asegurar la planificación de los servicios de saneamiento en armonía con el ambiente y el clima.

En particular se abordaron temas como la contribución de las Empresas Prestadoras de Servicios de Saneamiento (EPS) al cumplimiento de las NDC a través del desarrollo e implementación de los Planes de Mitigación y Adaptación al Cambio Climático (PMACC); así como el estado actual del Registro Único del Proceso de Adecuación Progresiva (RUPAP) de las descargas de aguas residuales generadas por las EPS, que afectan la calidad de los cuerpos de agua receptores; y el consiguiente impacto en la seguridad del abastecimiento de agua urbano e incremento de las emisiones de gases de efecto invernadero (GEI), aspectos a considerar en los futuros Planes de Saneamiento.

La inducción fue desarrollada por la Dirección General de Asuntos Ambientales (DGAA) del MVCS, con el apoyo de la Cooperación Suiza – SECO y la cooperación alemana para el desarrollo, implementada por la GIZ, a través de WaCCliM y PROAGUA II, contando con la participación de 25 personas; y es un buen ejemplo de la utilidad de la tecnología digital para asegurar la continuidad de los procesos en la actual coyuntura.

Esta reunión fue la primera de una serie de reuniones virtuales que se realizarán entre las direcciones del MVCS para concretar el proceso de actualización de los Planes Regionales y Plan Nacional de Saneamiento, incluyendo objetivos y metas respecto a las NDC y ODS 6.

“These [virtual] meetings are an opportunity for information exchange, which will contribute to the new proposal of the National Water and Sanitation Plan and the Regional Water and Sanitation Plans.”

These are the words of Mary Tesen (Sector Specialist from the Sanitation Directorate of the Peruvian Ministry of Housing, Construction and Sanitation – Ministerio de Vivienda, Construcción y Saneamiento; MVCS), concluding the first virtual meeting, which took place on 23 April of this year in the context of updating the water and sanitation plans.

The objective of the meeting was to brief the professionals of the Sanitation Directorate on the commitments, challenges and opportunities for the water sector in implementing Peru’s Nationally Determined Contributions (NDC) on climate change and achieve the Sustainable Development Goal on water (SDG 6). These professionals are in charge of updating the Regional Water and Sanitation Plans and the National Water and Sanitation Plan and ensuring the compliance of water services planning with environmental and climate concerns.

Specifically, the virtual meeting discussed issues such as the water and wastewater utilities’ contributions to the NDCs through the development and implementation of Climate Change Mitigation and Adaptation Plans (Planes de Mitigación y Adaptación al Cambio Climático; PMACC); as well as the current status of the Single Registry of the Progressive Adjustment Process (Registro Único del Proceso de Adecuación Progresiva; RUPAP) on wastewater discharge, which is generated by the utilities, affecting the quality of receiving water bodies. This in turn can impact urban water supply security and increase greenhouse gas (GHG) emissions – relevant aspects to consider in the future water and sanitation plans.

The briefing session was delivered by the General Directorate for Environmental Affairs (Dirección General de Asuntos Ambientales; DGAA) of the MVCS, with the support of the Swiss Cooperation – SECO and the German Development Cooperation, implemented by GIZ, through the WaCCliM and PROAGUA II projects. 25 people assisted the online meeting; a good practice case study of applying digital technology for ensuring process continuity under the current circumstances.

This meeting was the first out of a series of virtual meetings, which will take place among MVCS directorates in order to carry out the update process of the Regional Water and Sanitation Plans and the National Water and Sanitation Plan, including NDC- and SDG 6-related objectives and targets.

Picture in header: © GIZ

As the world adjusts day by day to the reality of the COVID-19 pandemic, research findings from the Dutch National Institute for Public Health and the Environment have driven home the importance of smart water and wastewater utilities across the globe. The presence of the coronavirus (SARS-CoV-2) in Dutch wastewater outflows and Treatment plants, flushed down the toilet by infected people, is a useful way for researchers to chart whether the disease is present in specific populations – a strategy that has been used for other viruses in the past. However, the fact that SARS-CoV-2 can persist in wastewater signals a larger worry for populations around the world that lack the facilities and protocols in place in the Netherlands. These uncommon times highlight inequalities in access to safe water and sanitation that are, unfortunately, quite common.

With whole economies coming to a halt, greenhouse gas emissions have stalled. But this does not mean climate action should be put on hold during the present crisis triggered by COVID-19. In the longer term, we don’t need to choose between the health of people and the health of the planet. Smarter systems, such as those advocated by WaCCliM, can easily serve both. When a resource-constrained utility is able to increase water and energy efficiency by replacing old pumps or fixing leaking pipes, it can also extend water and sanitation access to more households at a lower operating cost, and boost their resilience to the challenges posed by diseases such as COVID-19. Similarly, better wastewater treatment that prevents contamination and disease transmission can also enable a drastic reduction in the greenhouse gas emissions that otherwise seep out of untreated wastewater.

Case Study Mexico (2018)

WaCCliM pilot utilities have proven that cross-sectoral results can be achieved by interventions in the water and sanitation sector. For example, two utilities serving San Francisco del Rincón, Mexico, the Wastewater Treatment and Deposition Service (SITRATA) and San Francisco Drinking Water and Sewage System (SAPAF), have together achieved emissions reductions that are equivalent to planting 12,400 trees every year – and they have done it by expanding wastewater treatment coverage from less than half of their city to more than 80%, making San Francisco del Rincón cleaner, safer and greener all at once.

The governments and water ministries with whom we partner have their own essential roles to play: expanding desperately needed water and sanitation access; adapting systems to climate risks that threaten shortages or water contamination; and enabling utilities to shrink their carbon footprints. Understanding the linkages between sectors through the challenges and solutions to health crises such as COVID-19 involves recognising that individual precautions are important, but we also need systems that can sustain communities in the long term.

 

Finally, the crisis has put one other old truism in a new perspective: that water connects everyone. Water ties people together in health, in vulnerability, and not least in responsibility. At WaCCliM, we are proud to give water and wastewater utilities the tools to make those connections work for the common good, both at this crucial time and far into the future.